OIL DETECTION CANINES

2020 projects to detect subsurface oil

Ed Owens and Paul Bunker

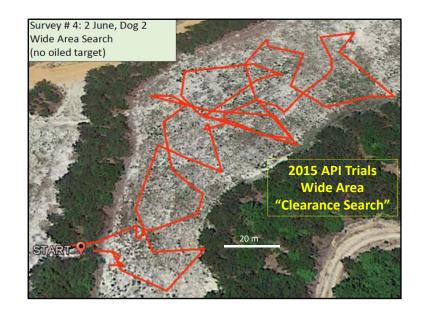
OCC

Humans have Breed Many Types of Working Dogs to Hone Specific K9 Skills

- Companions/therapy
- Detection dogs find things

- · Guide dogs
- Herding dogs
- Hunting (hounds, retrievers or terriers)
- Protection (personal or patrol) dogs
- · Search and rescue
- Sled dogs
- Tracking dogs follow things

Detection ("Sniffer") Dogs


- Can be trained to find almost any target by the odor molecules that a substance emits (easily down to ppb – maybe ppt?)
 - bed bugs, blood, cadavers, cancer, explosives, food, invasive species, mines, narcotics, wildlife, whale poop, Covid-19, etc.
- Trained using positive reinforcement ("Operant Conditioning"): dogs are motivated by rewards so the activity becomes fun.
- For oil detection, the K9 samples air-borne molecules at or near the ground-air interface and/or the ground scent ("footprint").
- Each nostril separately can determine the target odor concentration in milliseconds which allows the dog to instantly move towards a higher concentration.
- Can detect an odor tens or more meters away from the source.
- Unlike tracker dogs, once imprinted to an ordor do not need a starting point.

Oil detection began with pioneering work at SINTEF in 2007

Detection Dogs on Svalbard ITOSS/SINTEF 1997 IFO 30 oil SINTEF September 2008 Oil at 80 cm depth M/V Server oil spill

2015-2020 Field Projects DATE LOCATION ASSIGNMENT 2015 June Jackson Springs NC, API subsurface oil detection and USA delineation Field Trials 2016 June Chedabucto Bay, T/V *Arrow* spill shoreline survey Nova Scotia, Canada +1 year post release pipeline release: real-time spill 2016-2018 N. Saskatchewan River, SK, Canada response SCAT support 2017 June Prince William search for 28-year old Sound AK, USA sequestered oil 2020 API deep target weathered oils Somerset TX, USA **Field Trials February**

2015 Delineation Tests

- Objective: to delineate subsurface oiling identified during a Wide Area Search
 - Slower and more detailed search
 - Results in defining a focused area for a follow up SCAT* subsurface investigation (i.e. pits/trenches)
 - Typically on-leash search pattern directed by handler with support from a K9 SCAT Team Lead

2020 Field Trials

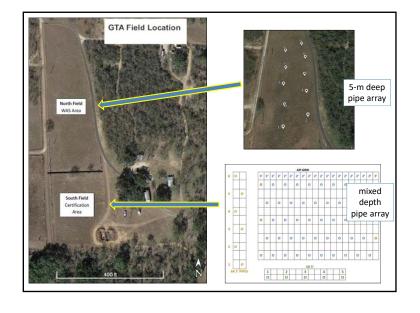
Three canines for replication: two Labradors with field experience and a young English Springer Spaniel in training

QUESTIONS:

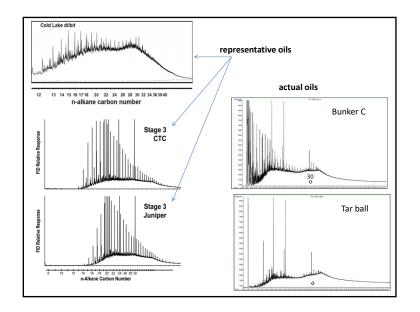
- 1. Can a canine detect weathered and "heavy" oil?
- 2. Can a canine be used to detect oils to greater depths than previously tested (90 cm)?

Chiron K-9 Training and Testing Facility

co-located with the Global Training Academy, Somerset TX, 30 minutes south of San Antonio


- environmentally controlled room with an industrial exhaust fan, viewing room, storage, and work rooms
- 12-arm carousel
- 3-port Olfactometer
- integrated data and media collection capability

· Certification grid open grass field



2020 Field Trials Oil Types

By increasing viscosity:

- unweathered dilbit (Cold Lake crude oil blend)
- unweathered Bunker C fuel
- weathered Macondo crude oil ("CTC")(like cold honey)
- very weathered semi-solid Macondo crude oil ("Juniper")
- solid, very weathered <u>marine tar balls</u> collected on Mustang Island TX

Task 1 - Weathered and "Heavy" Oils

- "Carousel" set up in an environmentally controlled room
- All runs "double blind"

Q. Can a canine detect weathered and "heavy" oils?

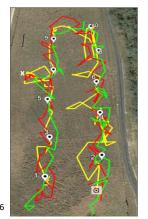
- 5 oils
- 3 canines: 2 experienced with oils 1 young dog in training
- high-sensitivity (5 ppm) PID (Photo-Ionization Detector)

Task 1 - K9 and PID Results - CAROUSEL

- K9's were 100% in 38 runs: each run <<1 minute
- PID did not detect any targets with the lids on the pots
 - With the lids removed and the PID sample port held still at ~1" from the pot detected 5 of the 6 targets
 - 4 PID readings ranged from 0.2 to 3.3 ppm: the 5th was 53.5 ppm (the unweathered dilbit)
 - no reading was registered on one of the tar ball targets

Task 2 - DEEP TARGETS (5 m - 15 feet)

- targets loaded at the base of 15-foot (5-m) pipes
- pipe bottom sealed
- pipes set into preplaced outer pipes and then back filled with the bore hole cuttings
- 3 oils (dilbit, Bunker C and tar ball targets) placed one week prior, the CTC and Juniper targets placed <24 hours prior



Task 2 - Weathered/Heavy Oil Deep Targets

- Q. Can a canine detect oils to greater depths than previously tested (3 feet - 90 cm)?
- Three K9s, 5 runs over 2 days
- Each K9 had one "double blind" run
- Total: 21 oiled targets, 20 blank targets, 9 empty pipes
- The K9s were not "primed" on the two weathered oils that had been placed <24 hours, both targets were detected successfully

Wide Area search:

- 49 targets were correctly identified during 5 runs
- Average run time 4.8 minutes for ~1.1 acres coverage
- Found 20 out of 21 on 15-foot deep targets
- One K9 did not detect "Juniper" the other 2 K9s did
- Detected the airborne odors on the run up to 40 feet (12 m) away from the pipe working into the wind and 6 feet (2 m) working with the wind

Day 2 track lines - three K9s

K9 and PID Results - WIDE AREA SEARCH

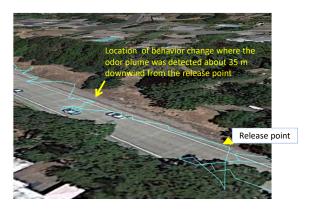
- K9's were 20 out of 21 on 15-foot deep targets
- detected the airborne odors on the run up to 40 feet (12 m) away from the pipe working into the wind and 6 feet (2 m) working with the wind
- PID did not register on any of the 8 field targets until port held still
 1 inch from the pipe surface: then registered on 5 of the 8 targets
- PID readings ranged from 0.2 to 2.5 ppm

Search Speeds/Coverage

- subsurface oil search rates logged for the 2020 API Field Trials translate to an average working speed for a 50-m wide, flat terrain, ROW on the order of 5 km of 100% coverage in one hour or less
- considerably faster than a normal walking speed with a PID or an ATV visual search speed for surface oil on a zigzag search track similar to that of a K9
- past field spill deployments in similar and rougher terrain conditions have shown can sustain this search rate for 4 to 6 hours at a time, with suitable rest periods, for 5 to 6 days in a row, for weeks on end

Verification

Project	Alerts or Targets	Verified	%	Comments
2015 API Field Trials	704	702	99	3-day program; strictly controlled design of oiled and non-oiled targets: very high confidence
2017 PWSSC-OSRI Study	28	18	64	3-day field study; verification constrained as very difficult to dig pits in the coarse sediments
2017 North Saskatchewan River Oil Spill Response	<u>8,689</u>	7,748	89	4 K9 SCAT teams deployed continuously for 13 weeks from May- August; surveyed 690 river shoreline km: verification % probably low
2020 API Deep Target Field Trials	60	59	98	3 dogs, very weathered oils, targets up to 5m in soils; PID verified 5 of 8 oil targets but only when held steadily right at soil surface


Right of Way Detection Survey - November 2020

- deployed in a COVID-constrained travel/work environment
 4-mile section of ROW somewhere west of the Mississippi
- urban, primarily commercial/infrastructure environment
- 2 major road crossings one confined waterway crossing
- experienced Oil Detection Canine certified under International Canine Spill & Leak Detection Association standards
- · professional handler

Right of Way Detection – November 2020

Survey Statistics

- Deployment
- ROW length
- ODC GPS track line
- Survey manager distance
- Time to completion
- Temperature
- Winds

60-65°F

• 4.5 hours

• 24 hours to site

• 6.4 km / 4 miles

• 16.6 km / 10.3 miles

• 11.1 km / 6.9 miles

 light breeze (<10 mph) – search conducted into the wind

K9 Support can be a Game Changer for Subsurface Oil Detection and Delineation

RESPONSE / PROJECT	PERIOD	NUMBER OF PITS/TRENCHES	COMMENT
Deepwater Horizon: SCAT	May 2010 - December 2012	>180,000	NOO in 67%
Deepwater Horizon: LAASR	January-June 2013	>32,000	NOO in 5 of the 15 selected target areas (33 %)
Deepwater Horizon: BOP	June-August 2013	>8,000	NOO in 86% of the locations
Bouchard B-155, Tampa Bay FL: SCAT	18-19 August 1993	964	1 team, 2 days: pits at a 1-m interval on 119 transects spaced at 160 m
Refugio, CA: SCAT	15 June 2015	360	4 teams: 1500' x 30' area $(4,000m^2)$ with a 10'x10' $(3m \ x \ 3m)$ grid in 6 hours

Huge Potential Time and Effort Savings for Shoreline Clearance Surveys

RESPONSE OPERATION	TOTAL SHORELINE LENGTH SURVEYED (km)	LENGTH WITH <u>NO</u> <u>OBSERVED OIL</u> (NOO) (km - %)
Deepwater Horizon	7,057	5,285 - 75%
T/V Exxon Valdez, AK	5,459	3,359 - 62%
M/V Selendang Ayu, AK	763	345 - 45%
M/V Cosco Busan, CA	379	232 - 61%

Oil Detection Canines (K9 SCAT Support)

A science-based game changer

- Do we need K9 support every time? NOT NECESSARILY
 - However, in some situations K9s can help to locate surface oil more quickly and so speed up traditional surveys, particularly in difficult terrain
- ✓ Should we consider their applicability and usefulness to support SCAT? EVERY TIME
 - At a minimum always ask whether a K9 support team can be used for subsurface oil detection and/or and clearance surveys?

Questions?

A dog is a tool and is a delicate and sensitive instrument - handle with care and love.

- A professional handler is responsible for the care, health, and safety of the animal.
- Air intake can go to the lungs or to the olfactory component of the nose – can close the intake instantly (milliseconds) if the odor is undesirable.
- No medical studies on the topic but has not been a problem for arson or explosive detection for decades.
- K9s and humans are constantly exposed to hydrocarbons e.g. gasoline filling stations.

Potential ODC Studies

- 1. Remote Oil Detection Sample Collection
- 2. Oil Detection Technology Comparison
- 3. One Oil Type Discrimination
- 4. Underwater Oil Detection
- 5. Seafood Taint Detection
- **6. Dispersant** Detection and Clearance
- 7. Texas Coast Tar Ball Background Study

Potential ODC Studies

- 1. Remote Oil Detection Sample Collection
- Collect air sample and deliver to an ODC
- Multiple land-sea-air-ice potential platform collection options
- Can support field-based for remote area operations
- Field trials can be verified by tph or GC analyses

Potential ODC Studies

- 3. One Oil Type Discrimination
 - ignore other (background) oils, such as tar balls
- 4. Underwater Oil Detection
 - freshwater and seawater
 - still and moving (currents) water
- 5. Seafood Taint Detection
 - fish and crustaceans/shell fish
 - · compare with a human panel
- 6. Dispersant Detection and Clearance
 - · onshore or on water

Potential ODC Studies

- 2. Oil Detection Technology Comparison
 - Oil Detection Canine (ODC)
 - Photoionization Detector (PID)
 - Konikore[®]
 - Smell.Inspector®
 - Electromagnetic (EM) Profilers (Conductivity)
 - Electrical Resistivity (ER) Profilers
 - Ground-Penetrating Radar (GPR)
 - Nuclear Magnetometer Resonance (NMR)
 - 1

Potential ODC Studies

- 7. Texas Coast Tar Ball Background Study
- 12 month time series
- monthly surveys with an ODC
- monthly beach profiles to understand sediment erosion and deposition cycles
- ? joint TAM Corpus Christi project

Potential ODC Studies

- 1. Remote Oil Detection Sample Collection
- 2. Oil Detection Technology Comparison
- 3. One Oil Type Discrimination
- 4. Underwater Oil Detection
- 5. Seafood Taint Detection
- **6. Dispersant** Detection and Clearance
- 7. Texas Coast **Tar Ball Background** Study

Things to Consider

- Potential for successfully **meeting objective**(s)
- Potential for **practical application**(s)
- Verification/credibility acceptance
- Level of **effort** (cost)
- Multidisciplinary/agency, student involvement

